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Weapons Systems Directorate (Mr. L. Neff), General® Thomas J. Rodman Labora-
tory, Rock Island Arsenal, Rock Island, Illinois.
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INTRODUCTION

In this report an attempt has been made to obtain a numerical solution
of two coupled non-linear partial differential equations. Although, the
present problem essentially deals with the dynamic response of helical
springs, the numerical scheme presented here can be easily extended for
the general case of coupled wave equations.

For several coupled one-dimensional waves associated with the dis-
placements ui(x,t), Uz(X.t)--'Un(X-t). the general system of n non-linear
partial differential equations can be written as:

3% L L
APRINNER IO SRE am_n=__1
ax? axh gp?
..... -
3% 3%y %
n L TR ann pee syl sl __n
ax? ax? ot?

In the present case, the solution of only two coupled wave equations
will be discussed; a situation which arises in the impact of helical
springs. However the method can be easily extended to any number of
coupled one-dimensional waves.

If one end of a massless spring is displaced relative to the other
end and the relative displacement is a function of the time t, then the
stresses in the spring are uniform and depend only on the time. The
assumption of a massless spring is generally on the non-conservative side
as for as stresses are concerned since the stresses are unifomly dis-
tributed along the spring. The problem becomes much more complex however
if the mass of the spring is taken into account and large displacements
are possible.

The static response of helical springs subjected to large deflections
ir presented in the work of Love E'I] . The dynamic response of springs is
treated in articles by Johnson [2] , Krebs and Weidlich [3], Dick [4],
Gaballe [5], Durant [6] Wittrick;7], Britton and Langlay[g%a Johnson
and Stewart [9], Kagavdf]O] , Su{11], Pujara and Kagawa[12], Haines and
Huang[13], Haines, Chang and Huang[14]. Wth the exception of Love, the
above authors restricted their analysis to small displacements about an
equilibrium position. Stokes[15], in a recent paper conducted an an-
alytical and experimental program to investigate the radial expansion of
helical springs due to longitudinal impact. In an article by Phillips
and Costello[16], an experimental and theoretical investigation was made
of the large deflections of an impacted spring.

Recent inquiries into the significance of torsional oscillations cfn
the radial expansion of helical springs, prompted the work of Costell 17]
In this work, a linear theory was presented and the solution did indicate
rather large radial expansion under impact. It is the purpose of this
present report to investigate the non-linear behavior of impacted springs
and to campare the results with the linear theory.

Since, the governing equations derived by Phillips and Costello [16]
are highly non-linear in nature, the solution of the system of equations




can be obtained only by some approximate numerical technique. In this
report two numerical techniques are described: (1) the method of non-
linear characteristics (2) and the method of finite differences. A
camparison is then made with the linear theory.

THEORY

The theory behind the method of characteristics has been discussed
in detail by Abbott [18]and it has been used for solving various wave
propagation problems by several authors e.q. Chou and Mortimex{19]and
Pernica and McNiven[ZO%. The method of characteristics is capable of
handling any time-dependent input for both linear and non-linear wave
propegation problems, but most of the reported work has been limited
to the method of linear characteristics only. In this present work,
consideration is given to the problem of the helical spring in complete
non-linear form.

The finite.difference method for solving partial differential
equations, is quite classical in nature. The work of Courant, Freidricks
and Le 21], Freidricks&ZZ], Lees[23], Forsythe and Wasow[24], Lax and
Wendroffl25], Collatz[26], Gourly and Morris [27]etc., are excellent
references for finite-difference methods for non-linear hyperbolic
equations. A recent paper by Smith [28]deals with the solution of the
3-dimensional wave equation by finite differences.

METHOD OF CHARACTERISTICS

Consider a system of two coupled non-linear partial differential
equations of the following form:

3%u v _ N
LA — m S5
all(ux,vx) ax2 alz(ux,vx) ek .aed
2 2 2 (2)
a(u,v).a_.t‘.-}a(u,v)u:u
LML Eret ol et . (480
with the boundary conditions
i ut(O,t) = ¢1(t) (3)
uy(1,8) = o (t) (a)
v, (0,t) = wl(t) (5)
t(1,t) = v (t) (6)
and the initial conditions
U (x,0) = £ (x) (7)
2
‘,n’ 3 y
§ et 4 J




vx(x,O) = f (x)
2

ut(x,O) =0

vt(x,o) =0

(8)
(9)
(10)

The above set of equations (2) can be converted into a set of first
order partial differential equations

Also

u

v

Equations (11)....(18) can be written

au

a B ¥ g =g al
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as follows:
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(12)

(13)

(14)

(15)

(16)

(17)

(18)
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The characteristic directions are determined by setting the deter-
minate of the coefficient matrix of Eq. 19 equal to zero. Hence,
the following equation results

3 dt]* dt|? -
(an a22 alz a“)[a-;] (an i azz)[a-f] o Sk N (20)
The above equation has four roots which are

dt) Ean + azz) ¢ Adn- az)?+ 4312321]%
=+

a—iJl,z 2(ajjaz2 - ajza21) (21)
and
2
gi] : ,[;‘% rey) Ve, e e T (22)
. 354 2(a a a8 )
11 22 12 22

Since the system of equations (2) has been assumed to be hyperbolic, all
the four roots are real and thus there are four characteristics. In order
to determine the differential equations along these characteristics, the
first column of the coefficient matrix is replaced by the column on the
right hand side of Eq. 19 and the coresponding determminant is set equal to
zero. Hence, the following equation results




dt)? dt)?
d"x[’ . "’[J;” i audvx{aﬂ

dt)?]dt dt)? %
n dut[] y azz[a-x—] ]dx 5 alz[d—x'} dvt ¥ (23)
In difference form the above equation cen be written as

dt)? dt)?
Aux[] 2 azz[-d_;]:[ " aszVx{ﬁJ

dt)?]dt dt)?
= Aut[] -322{3;] J-d-x‘ - alett[a] = O (24)

Thus the values of U_, vx, u, and Vv, at any unknown point L can be
determined by knowing thefr vAlues at pmt.nts P, Q, R and S lying on the
four characteristics passing through L and then solving 4 simultaneous
equations obtained from Eq. 24, Figure 1 shows the characteristic directions.

Lo o
o

Figure 1




Although the characteristics are curved due to the non-linearity of
Eq. 2, it will be assumed that LP, LQ, LR and LS are straeight lines; i.e.,

[CRARTSN | (N Y B (CRPRR R (ERM - N
oo ol - 088 8,
- (2, ol); p[tvely - )] - 0 (25)
[ - ][ - e 00, o]+ [0 - ogfe, Dol o
[ - wgl[ - @,00[8)] (B,

dt)? -
- (a;z)Q[W]z.Q[(Vt)L - v = 0 (26)
where
ng = + (all B azz) 4 \[z;;x i a22)2 : 4axza;1, s (27)
dxj1 p 20 8 ~u a
11 22 12 21 p
[d_t] S L Vi -8, )+ 2 ]“ (28)
dx 2,0 2fe. & -8 »
33 22 12 2% Q

By solving the above set of 4 simultaneous equations, the values of

(u \L, (v )L, (ut)L and (vt)L can be determined at any point L. Figure 2

shows the known points (x ) (x 3% ) e (x i s
7 gk 0 i T ¥ (i P 1 ey

The values of s Vo w and vy are assumed known at these points. Also

X{,j = X{,j+]+ The slopes of all the characteristics at (1-1,4), (1,3)
and (1+1,J) are known.




Figu'°
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Four different values of ti j+| are determined by knowing the slope of

{

the characteristic at (1-1,)) and (1+1,j).

. by
[ti,jﬂ_l g E‘i,jn " Xi-1, 4
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ta 2 = (X - X :
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The smallest value of the above ti,;lﬂ
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Hence

(29)
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(32)
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's i{s taken in order to remain in-

side the domain of dependence. Once the coordinates of point L (xj j413

R

}) are known the ccordinates of P, Q, R, and S can be computed as follows:
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41,5

i1,

It will now be assumed that
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The velues of the coefficients a,,, a,,, &,, and a,, and the values of
Uys Vo, Uy and vy can be computed at the points P,Q,R and S by linear
interpolation. Hence

a = a > 2  a - Xs ) + .

(3pq)p (@pgdiat, (@pq)1,5) Xp = X4,5) * (@) (45)

(X5.0,5 = *,3)

Once the values of the coefficients aj; and the dependent variables
uy, V4, up and v, are known at P, Q, R and §, then the simultaneous

equations obtained from Eq. 24 can be solved and thus yield the values
of ux)L’ VX)L u‘t)[_ and Vt)L at the point L. Once these values are known

at each nodal point for a new time step j+1, movement to the next step is
determined by the marching forward procedure.

The values of the dependent variables can be computed for any nodal
point other than the end points. The above method must be slightly mod-
ified in order to compute the dependent variables at the end points.

At both the ends (x=0 and x=1), u; and v{ are given for all values

of time and the only unknownsare uy, and vy at these end points. In order
to determine the values of uy, and vy, for the end points at the new time

step (j+1) use is made of only two characteristics. For a detemmination
of the values of u, and v, at x=0 (i=l) at point L, use is made of the

characteristics of family 3 and 4 as shown in Fig. 3.

Figure 3




Then by knowing the slopes of the characteristics at (2,J), two different

values of t] 341 are detemined. Hence
dt
| A = ’x 5 - X .l[——] .
, 15311 ; 150h1 2,J | (dX i) 24J (46)
dt
It l = lx 2 e H——] + % (47)
+ <
1,3+ : 15d+1 2,J | (dx o(2,5) 25J

In order to remain inside the domain of dependence the smaller of the above
two values is teken as the value of t-l i+ for any further computation.
Hence g

8. ot ol
A o BT s
xR dt B S Rl T K (48)
a'x' R rl; 2’\])
’ xl9j 2 x2'j
dt
tr [ﬁ] o i
39R
e Sy (50)
and
e . 51
to =t g (51)
It is assumed that
8., 8
s g W) (5 4y

Now the values of the coefficients a,,, &8,,, 8, and a,, and the values

of w, Vx, w and w can be computed at the point R by the methed of linear
interpolation as discussed previously. Since the point S and (2,)) always
coincide, no interpolation is needed for point S. Once all the values are
known at R, Eq. 24 yields two simultaneous equations slong LR and LS which
can be solved for the values of u, )1,j+l and vy),,j+1 at point L.

A similar procedure is used for the determination of u, and vy at x=l.




FINITE DIFFERENCE METHOD

Equations 11, 12, 13 and 14 can be written in finite difference fomm
for any gria point (i,Jj) as follows:

0 (53)

d

(a“)i,,j auX + (axz)i'j[il}_] = [i‘_ﬁ
i, ol s % R L

~
-
-

.

f A 3
(aZI)i j auX + (azz)i J[_all] - avt =0 (54)
: ﬁx_iij >V 19X

ot

P_“&] * [“t 0 (55)
i,+1

\

where i= 1,2,3,.--11,!14‘1 (Fig.h)o

e (i,3+1)

Uhds gl (L

hohoseohs

1 n+1
Figure 4

The initial conditions are

ux)i.x = filx) Vx)i.x = fa(x)

0

0

ut)igl 8 vt)igl ='

Bty Sl o T
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and the boundary conditions are

Ut)“j ¢1(t) ut)n+l,,j - ¢2(t)

Vel B30 Ved,5 T ()

Since the x axis is divided into n parts, the distance between two
consecutive grid points is

- = = 1
xi X5 h =
In order to remain inside the domain of dependence

k/n *g%]i or kK + h [(au + a;,) 'Wall - az,f + 43123211%
sJ

2(ay1a22 - a12221)

This is the Von Newman stability criteria for finite difference approx-
imations of hyperbolic equations. This must be checked at each grid point,
before carring out any further computations. Central difference approx-
imations are used in the x direction, and forward differences are used in
the t-direction for the finite difference approximations at all inter-
mediate grid points. Hence

(Updin = Yy 5t %‘F(all)i.jE‘x i+1,j ° ux)i-l,j]
* gha )y [AIRRERR N

v : =V)..+k321) U) = U R

t/i,j+l 9, h e dlx’1+1,J x"i=1,J

+ k
Zh%2 )i, ["x)m % "x)i-l.j]

Udiger = gyt 5"5 E"t 41,541 ° ut)i-],jﬂ]
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Once the values of ut, Vt, Ux and Vy have been computed at all the
intermediate points by the above formulas, the values of uy, v, can be
computed at the two end grid points (i=1l, and i=n+l) by fomré and back-
ward-differences respectively as

(a) at (i=1)

= ) +

ux)],j+1 U1,; [’3“t)1,j+1 4ut)2,j+1 iy - 3,J‘+1]

~
::'l""

Voly g = Ny 4t —'%['3"t)1,j+1 AV, 5 T Ve 3,j+1]
and
(b) at (1=n+1)

u_ ) ) - 4u

1,541 T Udnar,g Tt ﬂk-,"ut n-1,j+1 t)n,jﬂ 1 3ut)"”’j+]:[

v.) .

x'n+1,j+1 2 Vx)nﬂ «J * 2% Vt n-1,j+1 vt)n,jH % 3vt)n+] ,j+IJ

Thus the values of Uy, Vy, Uts and V¢ can be computed at all the
nodal points and by the similar Marching-Forward procedure can be com-
puted for any time step.

NUMERICAL CALCULATION

Pnillips and Costello [16] have derived the governing equations for
the large deflectioas of helical springs in which

a1 = (v_ sina + cosa)sina §- v (v_ sina + cosa) + cos’a
X m X
1-(1+u )2sin3a
1+uy )cos %a - cosa - 2v (l+u )(v sina + cosa)

ay; = az; = sin‘a Y (l+u )2sin? o.j—;’ (T+v) ('i-w)

az2 = sinadl - v (14 )2sin2a
: T




The spring for which the numerical values have been computed has

the following specifications
Number of coils = 3
helix angle & = 0.141815 radians
original length of spring L = 19.0 in
original mean coil radius R = 7.06 in
wire radius r = 0.594 in
Poisson's ratio v = 0.29
mass spring = 0.109351L4367
modulus of elasticity E = 30 x 10° psi
initial compression A = 6.5 in
axial strain € = uy
rotational strainf = v

X

initial conditions are
L

ut(x,O) =0 vt(x,O) =

the boundary conditions are

u (x,0) = -4, v (x,0) =

uy (0,t) =¢, (t) given (velocity of the impacted end x =

ut(o,t) =0 uy (1,8) =0 vy (1,t) =0

The velocity of the impacted endu, (0,t) =¢, (t) is shown in Fig. 5.

The results of the method of characteristics are shown in Fig.
6, 7, 8, 9, 10. The axial strain, rotational strain, axial force and

axial moment are shown at the impacted end x = O.

0)

The results of the method of finite differences are shown in Fig.

11, 12, 13, 14. The axial strain, rotational strain, axial force and

axial moment are shown at the impacted end x = O.
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SUMMARY AND CONCLUSIONS

In this report the dynamic non-linear equations of motion for an
impacted helical spring are solved numerically using the method of
characteristics and the method of finite differences. Both results compere
favorably. The non-linear equations of motion for the spring are presented
in the attached paper{16]. Also attached to this report is a paper [17]
which presents a method for detemining the radial expansicn of the spring.

The results in this report and the attached peper[17] indicate that
when a spring is subjected to an exial impact with an end velocity dia-
gram similar to that shown in Fig. 5, significant torsional oscillations
are set up in the spring. The results also show that at the impacted
end, for a given time, the normmal axial force can be relatively small
while the axial twisting moment can be rather large. Under such conditions
it is possible for one end of the spring to slip and rotate relative to
the other end. This rotation of one end relative to the other end may
cause the spring to wind up on the inside cylinder surrounding the spring.
If this occurs as the spring is in a period of large compression, it is
possible for the spring to tighten up on the inside cylinder as the spring
tends to expand. This tightening up of the spring would introduce rather
large frictional forces on the inside of the spring and hence would reduce
the springs capacity to expand. This decrease could result in a possible
hang-out-of-battery. It is also possible for the spring to slip at the
ends so that the spring contacts the outside cylinder. The frictional
forces on the outside of the spring may also be sufficient to cause hang-
out-of-battery.
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Radial Expansion of Impacted
Helical Springs

A theory is presented which will predict the radial expansion of impacted helical
springs. This becomes important in cases where the spring is surrounded by a cylindrical

constraint because of the possibility of excessive wear. The results show that the dynam-

ic radial expansion can be much larger than that predicted by statical methods

Introduction

Helical springs are used in many cases to resist impact loads
and, in certain instances, the springs resisting such loads are sur-
rounded by -ylindrical constraints. Since the velocity of the im-
pacted end may be rather large, the possibility of excessive wear
exists if the spring comes in contact with the cylindrical con-
straints. The dynamic radial #xpansion therefore becomes an im-
portant factor in the design of such a spring.

Love [1),! presents expressions for the static response of he.ical
springs subjected o large deflections. The dynamic response of
springs is treated in articles by Johnson [2], Dick (3], Krebs and
Weidlich [4], Geballe [5), Kagawa (6], Britton and Langley [7],
Johnson and Stewart (8], Wittrick [9] and Durant [10]. The forego-
ing authors, with the exception of Love, have restricted their anal-
ysis to small displacements about an cquilibrium position.

In an article by Phillips and Costello [11], a theoretical and ex-
perimental investigation is made of the la . e deflections of impact-
ed springs. Stokes [12], in a recent paper, conducted an analytical
and experimental program to investigate the radial expansion of
helical springs due to longitudinal impact. Of the 10 tests conduct-
ed only one set of photographic results was sharp enough to obtain
meaningful data on expansion. Also, Stokes indicates that his min-
imum complexity model, “does not take end effects into account
and therefore, strictly speaking, applies only to an infinite spring.”
It is felt by this author, alter observing a film of the dynamic im-
pact of a helical spring, that the end effects are very important.
Significant torsional oscillations can occur in the spring if one end
of the spring is fixed: a result of the reflections from the fixed end.

It is the purpose of this paper to present an expression for deter- |

mining the radial expansion of impacted springs.

' Numbers in brackets designate References at end of paper
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Fig. 1 Typical spring element

Theory

A consideration of the variations of the axial force F and the
axial torque T leads to the equations of motion for a typical spring
element, Fig. 1. The resulting equations are derived in [11] and are
presented here for further disc tion of force in the
x-direction yields

’u 7% 2%
S S — (1
ar? w?  a?
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while a summation of moments about the x -axis yields

oa a0 A%
s A O i S——

bak’ x?  at? @
where
1=i,r={“u rz,o-i-'o.i = t/(Mhr?/EI)\72, (3)
S o
-;fla—’-=(l—l—:~cm’n>|inn (4)
wl de v
rreF raT v
B e e g i - G e s g :
g W e e "
T
c-’%"i—é= (l —i:—sin"u) sin a (8)
- v

and x is the axial coordinate, u is the axial displacement of the
spring element, t is time, M is the total mass of the spring, ¢ is the
rotation of the spring element about the x-axis, r 1s the radius of
the spring helix in the unstretched position, h is the length of the
spring in the unstretched position, « is the extensional strain ou/ax,
B i the rotational strain riag/ox), E is Young's modulus of the
spring material, v is Poisson’s ratio of the spring material, o is the
angle which the tangent to the helix makes with a plane perpendic-
ular to the axis of the helix in the unstretched position and [ is the
moment of inertia of the circular cross section. It is assumed in the
foregoing equations that the wire cross section 1s circular. The
foregoing theory, however, can be easily modified to include wire
cross sections having equal principal radi of gyration. It should
also be emphasized that the theory assumes no contact between
adjacent coils

In the present work, it will be assumed that the spring is initially
compressed an amount A, is untwisted, and is motionless. Hence,
in terms of the dimensionless variables

a(x,0) = (1-2)A, o(x, 0) = 0,

2 0=0amd 2 0=0, Q)
at at

where A = A/h. The end of the spring at x = h is fixed and the end
at x = 0 1s assumed not 1o rotate but has an axial displacement
which is a known function of time, f(t). These conditions can be
expressed as

a(1,8) =0,001,¢) = 0,000,6) = 0,and a(0, 1) = J(i)
where [ = f/h

Once a solution is obtained which satisfics the equations of mo-
tion and the initial and boundary conditions, the radial expansion
of the spring can be determined. If the solution is known, then « =
au/ax and § = r(ag¢/ox) are determined and the radial expansion
car be calculated by combining the equations [11)

(8)

sin a;
[l e o 9)
sin o
and
1 r
-.i“"(;:cmm—cmn) (10)

whore ry is the radius of the spring in the stretched position and o,
is the angle which the tangent 1o the helix makes with a plane per-
pendicular to the axis of the helix in the stretched position

where

Ga(g,s) = La) = j;-u(x_ t)e *'dt (13)

The homogeneous solution of equations (11) and (12) is obtained
by assuming a solution of the form

@ = cpxe™ and D = dpe™* (14)

A substitution of equation (14) into equations (11) and (12) (the
homogeneous equations) yields
(@+¢)s? + Via+c)ist —_4-(}1:‘_—- b7)st

= ——— 15
- 2 (ac — b%) .
and
(s? = anx?)
= (16)
dh br.’ E

The particular solution is

l'lp=é(l—f)nndb,,=0. 17
s

Equation (15) vields four roots and hence the solution for the
transformed variables can be written as

a(x,s) = cy(s)e™* 4 cy(s)e Y 4 cals)ec?*

+cylsle~ " 4 é(l —-x) (18)
s

and
0(%,8) = di(s)e ™ + da(s)e 1"t + da(s)e™* + d(s)e~ """ (19)
where g
1 st
ey =-———and e, = V(I + 1)/sin a (20)
sin «
Equation (16) yields
dy=gicy, dy = gyey, dy = gacy, and dg = pacq (21)
where
(sin o« — @) I (sinn ) 1 @2
= ————andgz=(—"-a) -
& e T
A satisfaction of the transformed boundary conditions
0(0,s) = b(1,s) = a(l,s) = 0, and @ (0, <) = }(s) (23)
results in
A e
e <y By e
82 — &1 s/ e — e~
K2 A [ s
e - Sy £2
- g2 & (7(‘) s/ eV — gme1r
4 A e~re
calo) m ~—E1_ (](s) ~ -) grag;
& — &2 O -
and
A e
eole) = —Ei (7(.) - —) e (24)
&1 SETE e

The exponential factors appearing in equation (24) can be expand-
ed in power series, i.c., .

Solution s T Tl
Equations (1) and (2) become, after taking the Laplace trans.  uliens’ il =
form and
o b ™ -
—4b—=s’a (1 -2)3 11 = 3 e=tne -
B IR an r—pee——ilf Nl L2 L (25)
'_’1"‘. ,'ff g Knowing the solution for a(x, £) and & = i(k, s), the inverse
b—-4¢ 87D (12)
n? u? transform can be obtained. ‘T'he result is
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Fig. 3 Extensional and rolational sirain at the impacted end of spring

a(z,i)m ~—E8~ ¥ i - es(2n +2-2)] - &)
81~ Ein=0

xmz-..(zuz—z)n——— )_ Pl = ei(2n + 2)] - 4}

xH[i—:,(2n+t)l—' ); Uli - ea(2n + 2 - 2)] - A)
1

EL_ ¥ li - ex(2n + 0)] - &)
2a=0

n-e
XHlE —ez(2n+2))+(1—2)A (26)

XH[: —e3(2n +2-2)] +

and

o(x, 1) L
&

= Bin~0

]

xH[r—¢.(2n+2-s)|+‘ }_V[t-e.(znu)l—ll
| i

X Ht - ey(2n + 1)) - L2 5 (710 - ex(2n +2- 1)) -
&H l!u-o

X H(i - e3(2n + 2~ n|+ )_ {71é = ea(2n + £)] = §§

X H{i = ea(2n + 2)] (27)

where H(t) is the unit step function.
The local strains « = aw/ax and § = av/ox = r(ag/fox) can be ob-
tained by differentiating equations (26) and (27).
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Fig. 4 Radial expansion al impacted end of spring

Numecrical Results

Numerical results are presented for a given spring with the fol-
lowing characteristics:

h = 1.1938 metre

r = 0.157607 metre

¢ = radius of spring wire = 0.001308]1 metre
A = 0.254 metre

E = 20.68 X 10'° Newton/metre?

M = 2.12868 kilogram

v = 025
Number of coils = 6

Fig. 2 shows an experimentally obtained displacement and velocity
curve for the impacted end sf a spring with the properties just list-
ed. The ends of the spring were restrained against rotation.
In order to illustrate the radial expansion of the spring, the
fues of the exte [ strain « and the rotational strain 3 are
puted at the impacted end x = 0. The following equations de-
terminerand fatx = 0:

B2
B e ~ 2nek
«(0,1) e ;,)h.k." [(t ~ 2ne k)H |t ~ 2ne k)
£20:k
(‘g—';)h.}; flt =20 = 1)ekH[t = 2(n — 1) e k]
_&esk
=) B Hlt -
o ")-_‘ ['(t = 2nek)H[t — 2ne;k)
_&iesk
- t — 2(n = 1ezk
@1 - g2)h -Z-'nrl r ek}
X H[t = 2(n ~ 1)ezk] ~% (28)
and
gigrek =
POPEPE 1. & d i - Hit - 2
80,0) = - HEEET E £t = InehHe - 2nek]
S EEER S n = Desk M — 2n - Dek]
@2 - g1)h e
_8grek =
- t = 2neak)H|t = 2
@ = g2)h 3: iy i oot
[ D
- t = 2(n = Desk|H|t = 2(n - 1)e (29)
@ _"v..)__‘ rl n ok |H| n ok}
where
k= (Mr?h/EI'? (30)

Fig. 3 shows plots of « and 8, at x = 0, as a function of time while
Fig. 4 shows the radial expansion, at x = 0, as a function of time as
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determined by equations (9) and (10). The plots in Fig. 3 and 4 are
shown only for times up to 008 sec

If the mass of the spring is neglected, the strain in the spring is
uniform and Fig. 2 would then indicate a maximum strain in the
spring of « = —0.453 Assuming no rotation at the ends yields a ra-
dial expansion of 0.00220 metre [1]. When the mass of the spring is
not neglected, the foregoing theory predicts at x = 0, a radial expan-
sion at t = 01362 sec of 0.00573 metre or more than 2% times that
when the mass is neglected

Summary and Conclusions

A theory has been presented which will predict the radial expan-
sion and contraction of an impacted helical spring. In the equa-
tions of motion, the coefficients were assumed constant and thus
the equations become linear This assumption is verified by the ex
perimental work «f Phillips and Costello [11]. This theory also as-
sumes no contact between adjacent coils.

The results show that the dynamic radial deflection can be
much larger than that predicted from a massless theory. It should
also be emphasized that a large portion ~f the deflection is due to
reflections from the fixed end; a condition neglected in the work of
Stokes [12].
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Large Deflections of Impacted Helical Springs =~ -

12.5, 12.3, 12.3i

James W. PuirLirs AND GEORGE A. CoSTELLO

Department of Theoretical and A pplied Mechanics, University of Illinois, Urbana, Illinois 61801

A theoretical formulation of the large deflections of helical springs is given, and coupled nonlinear equations
of motion for a typical spring element are derived. Linearized forms of these equations are solved numerically
and compared with experimentally obtained streak photographs of an impacted spring. The agreement
between theory and experiment is good, as long as adjacent coils of the spring do not touch.

LIST OF SYMBOLS

¢ radius of spring wire, or other characteristic
dimension of wire cross section if wire is not
circular

17 ““fast” characteristic wavespeed

A “slow” characteristic wavespced

E Young’s modulus of spring material

F axial force

G shear modulus of spring material

h, by length of spring in unstretched and stretched
positions, respectively

1 moment of inertia of wire cross section

J polar moment of inertia of wire cross section

L total length of wire in spring, assumed constant
M total mass of spring

m mass of projectile impacting the spring

p, P pitch of spring in unstretched and stretched

positions, respectively
,71 radius of spring helix in unstretched and
stretched positions, respectively
maximum shear stress in spring cross section
time
twisting moment about r axis
axial displacement of spring clement

-

L L Rl ]

INTRODUCTION

In many engincering problems involving the dynam-
ics of springs, the mass of the spring can be neglected
and it is usually assumed that the spring is lincar. These
assumptions allow onc to formulate the problem so that
in many cases a closed-form solution is possible. The
problem becomes much more complex if one considers
the mass of the spring and assumes that large displace-
ments of the spring are possible.

32

v azimuthal displacement of spring clement

o impact velocity of projectile, positive towards
spring

x axial coordinate

a, a; angle which the tangent to the helix makes with
a plane perpendicular to the axis of the helix,
in the unstretched nd stretched positions,
respectively

B rotational strain, 8r/h or rd¢/dx

¥, 71 total helix angle of spring in unstretched and
stretched positions, respectively

A change in total spring length from unstretched
position, positive for extension

3 extensional strain, A/h or du/dx

6 angle of twist of spring about x axis

«, &y curvature of helix in unstretched and stretched
positions, respectively

v Poisson’s ratio of spring material

° maximum bending stress in spring cross section

7, vy torsion of helix in unstretched and stretched
positions, respectively

¢ rotation of spring about x axis

Love' presents expressions for the static response of
helical springs subjected to large deflections. Tn a more
recent work, Johnson? lists formulas and derivations of
a design procedure for dynamically loaded extension
and compression springs. In an article by Dick,? the
analysis of a simple shock wave in a helical spring is
discussed. Geballe! reviews a theory presented by Krebs
and Weidlich.* This treatment is correct only when
the spring extensions lic in a limited region near the

The Journol of the Acoustical Society of Americe 967




PHILLIPS AND COSTELLO

F16. 1. Static deflection of a
helical spring.

unloaded length. Durant® derives an expression for the
stress in a dynamically loaded spring in compression
when the helix angle is small. In a paper by Kagawa,’
the longitudinal and the torsional vibrations of helical
springs of finite length with small pitch are analyzed.
A wide-band short-duration pulse technique was used
by Britton and Langley* to investigate the stress wave
propagation in helical springs. In a paper by Johnson
and Stewart? transfer functions are presented for
helical springs. Wittrick'® considers waves in springs
with large helix angle.

With the exception of Love, the investigators men-
tioned above have restricted their analyses to small
displacements about an equilibrium position. It is the
purpose of this paper to extend Love’s analysis of Jarge
static deflections to the case of large dynamic displace-
ments. Of particular interest is the explicit solution
u(x,t) for an impacted spring.

I. THEORY
A. Force-Strain Relationships

Formally, the static end displacements A and 6 of a
helical spring with material properties [, v and geom-
etric parameters k, r, ¢, p can be written as

A= Il(,’.IT}I"’?'lhl'l(lp) (‘)
and

‘n/’(I..IT.),':IVI*;'![)’)I (2)
where F and 7" are the axial force and torque illustrated

in Fig. 1. Applying the theory of dimensional analysis
to Eq. 1, one can obtain the more useful reiationship

A p ( | S T )
. — TNy By
r Eft B v v r) y
968 Volume 51 Number 3 (Part 2) 1972
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or, since A is a linear function of ,

A F T ¢#
—‘=j‘(vv—l »>7.l yl " —‘)' (4)
h Br* Er* r #
Similar remarks can be made concerning Eq. 2 and
hence
or /RN AT S
L T =) )
h Er* Br* £ &

Now, for a given spring, v, ¢/r, and p/r are constants,
and therefore Eqgs. 4 and 5 can be written as

A Sl
=) 0
h Er* LEr?
and
or kT )
i h _/1(/',"1’, lfr’).
These equations can be inverted to read
I/ Er= f(e,8) (8)
and
T/LEr=g(eB). 9

In order to deduce the functional form of f and g, one
may now refer to Love’s work (Ref. 1, p. 415) on the
general theory of bending and twisting of thin rods.
At this point the analysis is restricted to wire cross
sections having equal principal radii of gyration, such
as circular or square cross scctions. Then

Fr® r cosay/ r
e s= e ————| —— sinay coSa —Sina cosa | -
El ri14v\n,

r r
—— sina,(v - ms’m—cos’a) (10)

L4 n
and
Tr sinay/r
e mm | = §INay COSa — SINA COSa
El l+V 141

r
+cosn,(- ~ coslay —-cos’a). (11)

"

Making usc of the geometric relations

p=2xr tana, py=2xr, tana, (12a,b)
h= L sina, hy= L sinay, (13a,b)
A=h—h, (i4)
y=h/r tana, ¥1=h/7\ tana,, (15a,b)
and

0=v,—1, (16)

one determines that
€= A/h=sina,/sina~— 1 (17)
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and
& Yr
ﬂ:.-w:-f ~(~-(‘()ﬂa|—('05(l). (18)

h  sina\r,

At this stage, a slight digression yields formulas for
stresses in the wire, at least for a circular cross section
this information is not required for the discussion to
follow. Kecalling that the curvature and torsion of a
helix are given by

x= cos’a/r, xy= cos’ay/ry, (19a,b)
r=sina cosa/r, Ty =sina; cosa;/ry, (20a,b)

and that the bending moment and torque are equal to
El(xy-x) and GJ(r,—7), respectively, one obtains
from clementary strength of materials formulas the
relations

o ¢fy
—_— »(—— cosa, —cos’n) (21)
E r\n
and
S err
-—=-(-— sina; cosay —sina cosa). (22)
G r\n

By a suitable combination of Eqgs. 10, 11, 17, and 18,
the functions f and g in Eqs. 8 and 9 are found. The
results are

Fr? v
—— = (B sina+ cosa) sina! ———(14-€)(B sina-+cosa)
<] 14»
(l+¢) cos’a cosa
o (23)

[l —(l+ c)’sm a]’ 14»
and
Tr

;zT—(‘+‘) sin’af (14 €)(8 sina+cosa) —cosa ]

=+ (B sina+cosa)[1—(14¢)? sin®c ]
—[1=(14¢?sin%a )} cos’a. (24)

It should be borne in mind that Eqs. 23 and 24 have
been derived by considering the total deflection of the
spring of length A. It is assumed in Sec. I-B, however,
that thesc equations can be used to compute F and T'
at any section of the spring in the dynamic case in
terins of € and 3, as long as one associates with ¢ and 8
the local strains

e=du/ox : (25)

B=rip/dx. (26)

and

B. Equations of Motion

Consideration of the variations of F and T with
position lcads to the equations of motion for a typical
spring element (see Fig. 2). A summation of forces in

3k

F&l’idx

Lr)T + --—d:

._;i"@) T

u‘S%dl

Fi1c. 2. Free body diagram of a spring element

the x direction yields

K d*u IF ()’d» M d*u
e (27)
de dx* 6;8 ax’ I| 01

while a summation of moments about the x axis yields

aT a*u 9T ¢ Mr* d%¢
— (28)
de dx? 9P Ix? h o

In these equations, the small change in radius » has
been neglected. In terms of the dimensionless variables

&=x/h, f=r/h, tu=wu/h, v=rd/h,

5 29
t=t/(Mhr*/F1), ()

Egs. 27 and 28 can be written

r? 8F ' s OF 0% O'u
—_————t—— — = (30)
EI de az' Ei ap ai? ot

and
r T 't r OT 9% a’i'
_—— e —. (31)
EI de 01 II Oﬂ 01’ 0(’

These second-order coupled differential equations are
nenlinear, since the coefficients are functions of the
strains ¢ and g; cxplicitly, one obtains from Fqs. 23
and 24 by partial ditferentiation

rt aF
— = (B sina-} cosa) smal»— (B sina+-cosa)
Il de 1

cos’a
— l. (32a)
[1— (l +¢)' sina ]!
s N B - (14-¢) cos'a
EI 8 EI ¢ o [l-(l-i—e)'sm'a]‘

cosa v a v 12b
ey +¢)(ﬂsma+cosa)|. (32b)
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Rooo o020 0.40 0.60 0.0  1.00 o
£ oT : s
r
s (Eq. 3%c)
8 El 9B ——\ g
S °
g g
= -
1 9F __/
Rg El o¢ (Ea.320a) 43;
o (-3
”
a C
IAJU 3
‘*S KEY [o‘
s Linear : Eqs. 33
» = = Nonlineor band-
::'g width corresponds 8
o to —02 <p<02 te
g |8
. T —
L 9F o £ 21 (gq 32b) 7 g
g Eil of " El de
dL—g -+ -+ o
'0.00 0.20 0.4 0.60 0.80 1.bo

COMPRESSIVE STRAIN (-¢)

Fi6. 3. Dependence of the coeflicients in the wave equations on
the strains e and . (a=0.10, »=0.29.)

and

r oT v
_—— sinn[l ——(14¢)? sin’a]. (32¢)
El a8 14»

It may be scen from Eqs. 32 that when the strains
are small, i.e.,

le|]<1, |81, (33a)
the coeflicients have the approximate values
r* oF v
—_— -——(\r’sina(l —_— cos‘a), (33b)
El d¢ 14»
 oF r OT v
— e = e~ ——— sinta Cosa, (33¢)

El a8 EI d¢ 14+v

r oT v
— ——:.\_vsina(! —— sin’a). (33d)
El a8 14»

If these limiting values are employed in place of the
actual nonconstant coefficients, the equations of motion,
Eqs. 30 and 31, are rendered linear,

and

C. Initial and Boundary Conditions

The specific problem of interest is a spring which at
1=0 is compressed uniformly, is untwisted, and is

970  Volume 51 Number 3 (Port 2) 1972
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motionless :
u(x,0)=xA/h, v(x,0)=0, 0<x<h; (34a)b)

du dv
—(x,0) =0, —(x,0)=0, 0<x<h. (35a,b)
at al

In Eq. 34a, the displacement #(4,0), namely A, may be
regarded as being imposed by a mechanical stop.
The end of the spring at x=0 remains fixed for all
time:
u(0,0)=0, v(0,0)=0, >0, (36a,b)
while the end at x=/ is impacted axially by a projectile
of mass m, and is assumed not to rotate:

*u(h,t)
—, v(ht)=0, 1>0. (37ab)
ar

Fht)=—m

Of course, the impact velocity of the projectile must also
be prescribed :
(0u/at) (h,0*)= —v,. (38)

It is anticipated that, at a certain instant in time, the
impacted end will return to its initial position. After
this instant, the projectile is no longer in contact with
the spring, so that Eq. 37a no longer applics; rather,
owing to the presence of the mechanical stop, either

u(hf)=A or F(ht)=0, (39a,b)

the latter condition holding only if and when dynamic
separation occurs.

II. NUMERICAL RESULTS

A. Examination of Coefficients

1t is interesting to note that for springs of moderate
helix angle (say a=0.1), the coeflicicnts d/°/de, ctc.,
appearing in the equations of motion, Eqs. 30 and 31,
are rather insensitive to the magnitude of the strains
eand 8, at least in the range of compressive axial strain
(—1<e<0). Specifically, in Fig. 3 onc sces that with
the exception of the small “cross terms” 97/de and
aF /a8, these coeflicients do not vary more than a
few percent from their corresponding values at zero
strain, given by Eq. 33. (Note that only dF/d¢ shows
any significant dependence on the rotational strain 8.)
Nevertheless, it was anticipated that use of the general
nonconstant cocflicients (Eq. 32) would be required to
describe the spring response accurately, and for this
recason a generally applicable numerical solution
technique was sought.

B. Finite-Difference Solution

Of the methods available, the method of finite
differences" scemed the simplest to use. Spatial and
temporal  second-order central  difference  formulas
were used for all the second partial derivatives appear-
ing in kqs. 30, 31, and 37. The first-order difference
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Fic. 4. Theoretical axial positions, as functions of time, of all the coils of a 58-coil spring lizbtly precompressed (A/h=—-003) and im-
pacted with a projectile. Results are from the lincar theory. Parameters are given Fq 40

relations for the initial conditions, Eqs. 35 and 38,
were integrated explicitly over the first time step,
after which the general solution was allowed to march
forward in time.

The following spring parameters were used :

h=18.3 in.,
¢=0.050 in. (circular wire),
=0.50in.,
p=h/58,
2=30X 107 1b/in.2, (40)
v=0.29,

M = 1.07X10 Yl sec?/in.,
m=1.67X10 * b sec?/in,,
ro=275 in./sec,

These values correspond to data for a S8 coil steel
spring used i the experimental progrion discussed
Jater. For thus spring, the heliv angle a is 0.10, so that
the information in Fig. 3 is pertinent.

C. Results

The axial position x,4 u(x, () of the ith coil has been
plotted in Fig. + for all the coils (150,123, 58)
as a function of tme 4, for an mpacted spring which
has been lightly precompressed. 1t must be recalled that
only over that portion of the top curve labeled "1
= —md*1/dr" is the projectile actually in contact with
the end coil. Otherwise the mechanical stop limits the
maximum end coil displacement. The results in Fig. 4
are based upon the lincar theory, i.e., upon use of the
constant cocthicients Eqs. 33,

S — g e

The impacting mass sets up an initial wavefront
which is straight, because linear theory is being used
and the initial spring configuration is one of uniform
strain. All reflected wavefronts pass through regions of
nonuniferm stexin. however, and consequently they
appear curved even though in the raudeformed coordinate
x the wavefronts are straight.

Actually, two distinct wavefront slopes in (x,f) space
arc possible in this problem. Specili ally, by considening
the characteristic surfaces™ associated with the govern
ing equations, Fqs. 3¢ and 31, one can show that
discontinuities in the variables F, T, du, o1, d¢ 0 can
be propagated ot the speeds o and o given by

Ith Elh sina
cl= sina, ¢l=-——-

= (41ah)
Mr? Mrt 14y

in the undeformed coordimate x when the linear theory
is used. For moderate a( <01, say), jumps in the avial
velodity du at are propagated principally along the
slower wavefront, whereas jumps in the rotational
velocity d¢ dt are propagated principally along the
faster wavefront Since it is the axial displacement w
which is represented in Fig 4, the wavefronts in that
figure should correspond to the slow wavespeed ¢,
and this is in fact veritied by a comparison of the values
of ¢, and ¢, obtained from Eqs. 40 and 41 with the slope
which the initial wavefront in Fig. 4 would have in
() space.

After the projectile leaves the spring, the end coil
remains at the mechanical stop briefly and  then
separates, only 1o return shortly thercafter. “This
dynamic separation, which is enhanced by large impact

The Journal of the Acoustical Society of America 971




PHILLIPS AND COSTELLO

]
)

i

a——-- b ~ -projectile
. \\‘/‘ .

e

dohist
"'!.:i
%

LA

M

|

ST e
~ 00! sec —=

P i

i

i

e
s
§

il

ST

Fic. 5. Experimentally obtained streak photograph of a spring lightly precompressed (/4= —0.03) and impacted with a projectile.

Parameters are given in Eq. 40.

velocities and light precompressions, occurs again and
again with some regularity for times greater than that
shown in Fig. 4.

Remarks about use of the nonlinear theory are made
later in the paper; no results based on the nonlinear
theory will be presented. However, it should be repeated
thau the finite-difference technique outlined above can
handle the nonlincar case as well as the lincar one.

II1. EXPERIMENT

It is interesting to compare the results of the linear
theory to actual streak photographs of impacted
springs, such as that shown in Fig. 5. for a spring and
projectile having the properties, Eq. 40.

A. Experimental Setup

Several records like those shown in Figs. S and 6
were obtained with the aid of a streak camera of the
rotating drum type. In the experimental setup, a
hotizontal rod supported the spring specimen and the
thick-walled cylindrical projectile axially. One end of
the spring was rigidly fixed, while the end facing the
projectile was brought to its precompressed position by
means of a thin washer and a retaining plate through
which the projectile could pass freely. The optical
axis of the camera was horizontal and perpendicular to
the spring axis; at any instant in time, only a series of
dots corresponding to the instantaneous positions of
all the coils appeared on the photographic paper
wrapped around the drum. To trigger the shutter on
the camera, suitable delay circuits were constructed
and synchronized with a photocell monitoring the path
of the projectile just prior to impact.

972 Volume 5\ Number 3 (Port 2) 1972

B. Results

In Figs. S and 6, just as in lig. 4, the bottom line
represents the fixed end of the spring as a function of
time, while the top line represents the position of the
impacted end. The serics of parallel lines on the left-
hand side correspond to the undisturbed initial positions
of all the coils in the precompressed configuration, and
the black streak labeled “projectile” corresponds to
the trace of the 2-in.-long projectile as a function of
time.

If one’s attention is confined to Fig. 5 alone, it is
observed that all the features predicted by the linear
theory are found experimentally: a straight initial
wavefront, seemingly curved reflected wavefronts,
approximately two interactions of reflected wavefronts
with the projectile, and dynamic separation shortly
after the projectile leaves. Furthermore, the lincar
theory predicts accurately the wavespeed associated
with jumps in the axial velocity, the maximum penetra-
tion of the projectiie, and the time of projectile contact.

In Fig. 6, however, where the magnitudes of the
precompression and impact velocity are considerably
greater than thosc in Fig. 5, there is evidence of contact
between adjacent coils. This contact phenomenon,
which was not considered in the development of the
theory, accounts for the curved initial wavefront and
the near-vertical reflected wavefront at the fixed end.

IV. CONCLUSIONS

For moderate helix angle a, it has been shown that
the linear theory developed in this paper is adequate
for describing the dynamic spring response as long as
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F16. 6. Streak photograph of the same spring and projectile as in
impact velocity (ve=380 in./scc.).

the coils do not touch one another. Specifically, the
good agreement between theory and experiment (Figs.
4 and S, respectively) indicates that one may use the
linear theory even when the displacements are large
and the axial strains vary between zero and minus
one-kalf, approximately.

One would expect, however, that for large helix
angles and/or large positive axial strains, the linear
theory may no longer hold adequately, and in this
case Eqgs. 30 and 31 would have to be solved in conjunc-
tion with the nonlinear force-displacement relations,

Eqs. 32
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